Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Trends Parasitol ; 39(11): 929-935, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37684152

RESUMEN

Recent data suggest that approaches to developing a subunit blood-stage malaria vaccine may be misdirected. While antigenic polymorphism is recognized as a challenge, efforts to counter this have primarily involved enhancing the quantity and quality of antibody with potent adjuvants, identifying conserved target proteins, or combining multiple antigens to broaden the immune response. However, paradoxically, evidence has emerged that narrowing, rather than broadening, the immune response may be required to obtain an immune response protective against multiple Plasmodium strains. Non-immunodominant, conserved epitopes are crucial. The evidence comes from studying the immune response to red cell surface-expressed antigens but should also be applicable to merozoite surface antigens. Strategies to define the targets of these highly focused immune responses are provided.

2.
Front Cell Infect Microbiol ; 13: 1202276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396303

RESUMEN

During Plasmodium falciparum infection in pregnancy, VAR2CSA is expressed on the surface of infected erythrocytes (IEs) and mediates their sequestration in the placenta. As a result, antibodies to VAR2CSA are largely restricted to women who were infected during pregnancy. However, we discovered that VAR2CSA antibodies can also be elicited by P. vivax Duffy binding protein (PvDBP). We proposed that infection with P. vivax in non-pregnant individuals can generate antibodies that cross-react with VAR2CSA. To better understand the specificity of these antibodies, we took advantage of a mouse monoclonal antibody (3D10) raised against PvDBP that cross-reacts with VAR2CSA and identified the epitopes targeted by this antibody. We screened two peptide arrays that span the ectodomain of VAR2CSA from the FCR3 and NF54 alleles. Based on the top epitope recognized by 3D10, we designed a 34-amino acid synthetic peptide, which we call CRP1, that maps to a highly conserved region in DBL3X. Specific lysine residues are critical for 3D10 recognition, and these same amino acids are within a previously defined chondroitin sulfate A (CSA) binding site in DBL3X. We showed by isothermal titration calorimetry that the CRP1 peptide can bind directly to CSA, and antibodies to CRP1 raised in rats significantly blocked the binding of IEs to CSA in vitro. In our Colombian cohorts of pregnant and non-pregnant individuals, at least 45% were seroreactive to CRP1. Antibody reactivities to CRP1 and the 3D10 natural epitope in PvDBP region II, subdomain 1 (SD1), were strongly correlated in both cohorts. These findings suggest that antibodies arising from PvDBP may cross-react with VAR2CSA through the epitope in CRP1 and that CRP1 could be a potential vaccine candidate to target a distinct CSA binding site in VAR2CSA.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Embarazo , Ratones , Femenino , Ratas , Animales , Plasmodium vivax , Epítopos , Plasmodium falciparum/química , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Malaria Falciparum/metabolismo , Placenta , Sulfatos de Condroitina/metabolismo , Eritrocitos , Unión Proteica
3.
Lancet Glob Health ; 11(7): e1061-e1074, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37276878

RESUMEN

BACKGROUND: Malaria infections during pregnancy can cause adverse birth outcomes, yet many infections are undetected by microscopy. We aimed to describe the epidemiology of submicroscopic malaria infections in pregnant women in Asia, the Americas, and Africa using aggregated and individual participant data (IPD). METHODS: For this systematic review and meta-analysis, studies (published Jan 1, 1997 to Nov 10, 2021) with information on both microscopic and submicroscopic infections during pregnancy from Asia, the Americas, or Africa, identified in the Malaria-in-Pregnancy Library, were eligible. Studies (or subgroups or study groups) that selected participants on the basis of the presence of fever or a positive blood smear were excluded to avoid selection bias. We obtained IPD (when available) and aggregated data. Estimates of malaria transmission intensity and sulfadoxine-pyrimethamine resistance, matched by study location and year, were obtained using publicly available data. One-stage multivariable logit and multinomial models with random intercepts for study site were used in meta-analysis to assess prevalence of and risk factors for submicroscopic infections during pregnancy and at delivery. This study is registered with PROSPERO, number CRD42015027342. FINDINGS: The search identified 87 eligible studies, 68 (78%) of which contributed to the analyses. Of these 68 studies, 45 (66%) studies contributed IPD (48 869 participants) and 23 (34%) studies contributed aggregated data (11 863 participants). During pregnancy, median prevalence estimates were 13·5% (range 0·0-55·9, 66 substudies) for submicroscopic and 8·0% (0·0-50·6, 66 substudies) for microscopic malaria. Among women with positive Plasmodium nucleic acid amplification tests (NAATs), the median proportion of submicroscopic infections was 58·7% (range 0·0-100); this proportion was highest in the Americas (73·3%, 0·0-100), followed by Asia (67·2%, 36·4-100) and Africa (56·5%, 20·5-97·7). In individual patient data analysis, compared with women with no malaria infections, those with submicroscopic infections were more likely to present with fever in Africa (adjusted odds ratio 1·32, 95% CI 1·02-1·72; p=0·038) but not in other regions. Among women with NAAT-positive infections in Asia and the Americas, Plasmodium vivax infections were more likely to be submicroscopic than Plasmodium falciparum infections (3·69, 2·45-5·54; p<0·0001). Risk factors for submicroscopic infections among women with NAAT-positive infections in Africa included older age (age ≥30 years), multigravidity, and no HIV infection. INTERPRETATION: During pregnancy, submicroscopic infections are more common than microscopic infections and are associated with fever in Africa. Malaria control in pregnancy should target both microscopic and submicroscopic infections. FUNDING: Bill & Melinda Gates Foundation through the Worldwide Antimalarial Resistance Network.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Femenino , Humanos , Embarazo , Adulto , Prevalencia , Malaria/prevención & control , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Factores de Riesgo
4.
5.
Am J Trop Med Hyg ; 107(5): 1015-1027, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36191874

RESUMEN

Passive immunity acquired through transplacental IgG transport is essential to protect infants against pathogens as childhood vaccination programs begins. Diarrhea caused by rotavirus and neonatal tetanus are common and potentially fatal childhood infections that can be prevented by transplacental IgG. However, it is not known whether maternal infections in pregnancy can reduce the transfer of these antibodies to the fetus. This study evaluated the effect of submicroscopic Plasmodium infection during pregnancy on the transfer of maternal IgG antibodies against rotavirus (anti-RV) and tetanus toxoid (anti-TT) to newborns of pregnant women residing in Puerto Libertador and Tierralta, Colombia. Expression of different immune mediators and levels of IgG against rotavirus and tetanus toxoid were quantified in pregnant women with and without Plasmodium infection during pregnancy. Submicroscopic infection at the time of delivery was associated with a cord-to-maternal ratio (CMR) > 1 for anti-RV and < 1 for anti-TT IgG, as well as with an increase in the expression of immune mediators of inflammation (IFN-γ), anti-inflammation (IL-10, TGF-ß), and regulation (FoxP3, CTLA-4). When compared by species, these findings (CMR > 1 for anti-RV and < 1 for anti-TT IgG) were conserved in submicroscopic Plasmodium vivax infections at delivery. The impact of Plasmodium infections on neonatal susceptibility to other infections warrants further exploration.


Asunto(s)
Malaria , Rotavirus , Tétanos , Lactante , Recién Nacido , Femenino , Embarazo , Humanos , Toxoide Tetánico , Anticuerpos Antibacterianos , Tétanos/prevención & control , Inmunoglobulina G , Inmunidad Materno-Adquirida
6.
Pathogens ; 11(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35335687

RESUMEN

Cholera is a severe diarrheal disease caused by Vibrio cholerae, a natural inhabitant of brackish water. Effective control of cholera outbreaks depends on prompt detection of the pathogen from clinical specimens and tracking its source in the environment. Although the epidemiology of cholera is well studied, rapid detection of V. cholerae remains a challenge, and data on its abundance in environmental sources are limited. Here, we describe a sensitive molecular quantification assay by qPCR, which can be used on-site in low-resource settings on water without the need for DNA extraction. This newly optimized method exhibited 100% specificity for total V. cholerae as well as V. cholerae O1 and allowed detection of as few as three target CFU per reaction. The limit of detection is as low as 5 × 103 CFU/L of water after concentrating biomass from the sample. The ability to perform qPCR on water samples without DNA extraction, portable features of the equipment, stability of the reagents at 4 °C and user-friendly online software facilitate fast quantitative analysis of V. cholerae. These characteristics make this assay extremely useful for field research in resource-poor settings and could support continuous monitoring in cholera-endemic areas.

7.
Trends Parasitol ; 37(1): 65-76, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33067131

RESUMEN

The Plasmodium falciparum protein VAR2CSA is a critical mediator of placental malaria, and VAR2CSA antibodies (IgGs) are important to protect pregnant women. Although infrequently detected outside pregnancy, VAR2CSA IgGs were reported in men and children from Colombia and Brazil and in select African populations. These findings raise questions about the specificity of VAR2CSA IgGs and the mechanisms by which they are acquired outside pregnancy. Here we review the data on VAR2CSA IgGs in men and children from different malaria-endemic regions. We discuss experimental factors that may affect interpretation of the serological data and consider the biological relevance of VAR2CSA IgGs in non-pregnant populations. We propose potential mechanisms for the acquisition of VARCSA IgGs outside of pregnancy. We identify knowledge gaps and research priorities.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Humanos , Malaria Falciparum/sangre , Malaria Falciparum/inmunología , Investigación/tendencias
8.
Pathogens ; 9(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339261

RESUMEN

Vibrio metoecus is a recently described aquatic bacterium and opportunistic pathogen, closely related to and often coexisting with Vibrio cholerae. To study the relative abundance and population dynamics of both species in aquatic environments of cholera-endemic and cholera-free regions, we developed a multiplex qPCR assay allowing simultaneous quantification of total V. metoecus and V. cholerae (including toxigenic and O1 serogroup) cells. The presence of V. metoecus was restricted to samples from regions that are not endemic for cholera, where it was found at 20% of the abundance of V. cholerae. In this environment, non-toxigenic O1 serogroup V. cholerae represents almost one-fifth of the total V. cholerae population. In contrast, toxigenic O1 serogroup V. cholerae was also present in low abundance on the coast of cholera-endemic regions, but sustained in relatively high proportions throughout the year in inland waters. The majority of cells from both Vibrio species were recovered from particles rather than free-living, indicating a potential preference for attached versus planktonic lifestyles. This research further elucidates the population dynamics underpinning V. cholerae and its closest relative in cholera-endemic and non-endemic regions through culture-independent quantification from environmental samples.

10.
Vaccines (Basel) ; 8(3)2020 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-32708370

RESUMEN

In pregnant women, Plasmodium falciparum-infected red blood cells adhere to the placenta via the parasite protein VAR2CSA. Two vaccine candidates based on VAR2CSA are currently in clinical trials; however, these candidates failed to elicit strain-transcending antibody responses. We previously showed that a cross-reactive monoclonal antibody (3D10) raised against the P. vivax antigen PvDBP targets epitopes in VAR2CSA. We now aim to design a peptide vaccine against VAR2CSA based on the epitope that generated 3D10. We mapped the epitope to subdomain 1 (SD1) of PvDBP and identified a peptide that contained the minimal sequence. However, this peptide did not elicit cross-reactive VAR2CSA antibodies in mice. When tested against a broader, overlapping peptide array spanning SD1, 3D10 in fact recognized a discontinuous epitope consisting of three segments of SD1. These findings presented the challenge to generate this larger structural epitope as a synthetic peptide since it is stabilized by two pairs of disulfide bonds. We overcame this using a synthetic scaffold to conformationally constrain the SD1 peptide and coupled it to keyhole limpet hemocyanin (KLH). The SD1-KLH conjugate elicited antibodies in mice that cross-reacted with VAR2CSA. This strategy successfully recapitulated a discontinuous epitope with a synthetic peptide and represents the first heterologous vaccine candidate against VAR2CSA.

13.
Front Immunol ; 11: 335, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174924

RESUMEN

The infection dynamics between different species of Plasmodium that infect the same human host can both suppress and exacerbate disease. This could arise from inter-parasite interactions, such as competition, from immune regulation, or both. The occurrence of protective, cross-species (heterologous) immunity is an unlikely event, especially considering that strain-transcending immunity within a species is only partial despite lifelong exposure to that species. Here we review the literature in humans and animal models to identify the contexts where heterologous immunity can arise, and which antigens may be involved. From the perspective of vaccine design, understanding the mechanisms by which exposure to an antigen from one species can elicit a protective response to another species offers an alternative strategy to conventional approaches that focus on immunodominant antigens within a single species. The underlying hypothesis is that certain epitopes are conserved across evolution, in sequence or in structure, and shared in antigens from different species. Vaccines that focus on conserved epitopes may overcome the challenges posed by polymorphic immunodominant antigens; but to uncover these epitopes requires approaches that consider the evolutionary history of protein families across species. The key question for vaccinologists will be whether vaccines that express these epitopes can elicit immune responses that are functional and contribute to protection against Plasmodium parasites.


Asunto(s)
Epítopos/inmunología , Vacunas contra la Malaria/inmunología , Animales , Anticuerpos Antiprotozoarios/biosíntesis , Antígenos de Protozoos/inmunología , Reacciones Cruzadas , Diseño de Fármacos , Eritrocitos/parasitología , Humanos , Inmunización , Malaria/prevención & control , Malaria/transmisión , Linfocitos T/inmunología
14.
Front Immunol ; 11: 609957, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391279

RESUMEN

Pregnancy-associated malaria (PAM) caused by Plasmodium falciparum can result in detrimental outcomes for both mother and infant, including low infant birth weight, preterm birth, maternal anemia, spontaneous abortion, and maternal and/or infant mortality. Maternal anemia is a particularly complex outcome, as the body must both maintain erythropoiesis and tolerance of the growing fetus, while directing a Th1 response against the parasite. Underlying the pathogenesis of PAM is the expression of variant surface antigens (VSAPAM) on the surface of infected red blood cells (iRBC) that mediate sequestration of the iRBC in the placenta. Naturally acquired antibodies to VSAPAM can block sequestration and activate opsonic phagocytosis, both associated with improved pregnancy outcomes. In this review, we ask whether VSAPAM antibodies can also protect mothers against malarial anemia. Studies were identified where VSAPAM antibody titres and/or function were associated with higher maternal hemoglobin levels, thus supporting additional protective mechanisms for these antibodies against PAM. Yet these associations were not widely observed, and many studies reported no association between protection from maternal anemia and VSAPAM antibodies. We discuss the epidemiological, biological and technical factors that may explain some of the variability among these studies. We appraise the current evidence of these complex interactions between PAM-specific immunity and maternal anemia, propose potential mechanisms, and discuss knowledge gaps.


Asunto(s)
Anemia/inmunología , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Antígenos de Superficie/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Complicaciones Parasitarias del Embarazo/inmunología , Anemia/sangre , Anemia/parasitología , Animales , Eritrocitos/inmunología , Eritrocitos/parasitología , Femenino , Interacciones Huésped-Parásitos , Interacciones Huésped-Patógeno , Humanos , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Placenta/inmunología , Placenta/parasitología , Plasmodium falciparum/patogenicidad , Embarazo , Complicaciones Parasitarias del Embarazo/sangre , Complicaciones Parasitarias del Embarazo/parasitología
15.
mBio ; 10(5)2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594821

RESUMEN

Many pathogens evolve extensive genetic variation in virulence proteins as a strategy to evade host immunity. This poses a significant challenge for the host to develop broadly neutralizing antibodies. In Plasmodium falciparum, we show that a mechanism to circumvent this challenge is to elicit antibodies to cryptic epitopes that are not under immune pressure. We previously discovered that antibodies to the Plasmodium vivax invasion protein, PvDBP, cross-react with P. falciparum VAR2CSA, a distantly related virulence factor that mediates placental malaria. Here, we describe the molecular mechanism underlying this cross-species immunity. We identified an epitope in subdomain 1 (SD1) within the Duffy binding-like (DBL) domain of PvDBP that gives rise to cross-reactive antibodies to VAR2CSA and show that human antibodies affinity purified against a synthetic SD1 peptide block parasite adhesion to chondroitin sulfate A (CSA) in vitro The epitope in SD1 is subdominant and highly conserved in PvDBP, and in turn, SD1 antibodies target cryptic epitopes in P. falciparum VAR2CSA. The epitopes in VAR2CSA recognized by vivax-derived SD1 antibodies (of human and mouse origin) are distinct from those recognized by VAR2CSA immune serum. We mapped two peptides in the DBL5ε domain of VAR2CSA that are recognized by SD1 antibodies. Both peptides map to regions outside the immunodominant sites, and antibodies to these peptides are not elicited following immunization with VAR2CSA or natural infection with P. falciparum in pregnancy, consistent with the cryptic nature of these target epitopes.IMPORTANCE In this work, we describe a molecular mechanism of heterologous immunity between two distant species of Plasmodium Our results suggest a mechanism that subverts the classic parasite strategy of presenting highly polymorphic epitopes in surface antigens to evade immunity to that parasite. This alternative immune pathway can be exploited to protect pregnant women from falciparum placental malaria by designing vaccines to cryptic epitopes that elicit broadly inhibitory antibodies against variant parasite strains.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Epítopos/inmunología , Inmunidad Heteróloga , Plasmodium falciparum/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Receptores de Superficie Celular/inmunología , Animales , Brasil , Adhesión Celular , Sulfatos de Condroitina/metabolismo , Colombia , Reacciones Cruzadas , Mapeo Epitopo , Humanos , Malaria Falciparum/inmunología , Malaria Vivax/inmunología , Ratones , Uganda , Factores de Virulencia/inmunología
16.
Am J Trop Med Hyg ; 100(6): 1534-1540, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30994095

RESUMEN

Infection with dengue virus (DENV) is widespread across tropical regions and can result in severe disease. Early diagnosis is important both for patient management and to differentiate infections that present with similar symptoms, such as malaria, chikungunya, and Zika. Rapid diagnostic tests that are used presently for point-of-care detection of DENV antigens lack the sensitivity of molecular diagnostics that detect viral RNA. However, no molecular diagnostic test for DENV is available for use in field settings. In this study, we developed and validated a reverse transcription-polymerase chain reaction (RT-PCR) for the detection of DENV adapted for use in field settings. Reverse transcription-polymerase chain reaction was performed directly from plasma samples without RNA extraction. The assay detected all four serotypes of DENV spiked into blood or plasma. Our RT-PCR does not cross-react with pathogens that cause symptoms that overlap with dengue infection. The test performed equally well in a conventional laboratory qPCR instrument and a small, low-cost portable instrument that can be used in a field setting. The lower limit of detection for the assay was 1 × 104 genome copy equivalents/mL in blood. Finally, we validated our test using 126 archived patient samples. The sensitivity of our RT-PCR was 76.7% (95% CI: 65.8-87.9%) on the conventional instrument, and 78.3% (95% CI: 65.8-87.9%) on the field instrument, when compared with the RealStar Dengue RT-PCR Kit 2.0. The molecular test described here is user-friendly, low-cost, and can be used in regions with limited laboratory capabilities.


Asunto(s)
Virus del Dengue/clasificación , Dengue/diagnóstico , Pruebas en el Punto de Atención , Reacción en Cadena de la Polimerasa/métodos , ARN Viral/sangre , Alphavirus , Animales , Chlorocebus aethiops , Humanos , Inmunoensayo , Plasmodium falciparum , Plasmodium vivax , Sensibilidad y Especificidad , Pruebas Serológicas/métodos , Especificidad de la Especie , Células Vero , Virus Zika
17.
J Infect Dis ; 219(1): 110-120, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30534974

RESUMEN

Background: In pregnancy, Plasmodium falciparum parasites express the surface antigen VAR2CSA, which mediates adherence of red blood cells to chondroitin sulfate A (CSA) in the placenta. VAR2CSA antibodies are generally acquired during infection in pregnancy and are associated with protection from placental malaria. We observed previously that men and children in Colombia also had antibodies to VAR2CSA, but the origin of these antibodies was unknown. Here, we tested whether infection with Plasmodium vivax is an alternative mechanism of acquisition of VAR2CSA antibodies. Methods: We analyzed sera from nonpregnant Colombians and Brazilians exposed to P. vivax and monoclonal antibodies raised against P. vivax Duffy binding protein (PvDBP). Cross-reactivity to VAR2CSA was characterized by enzyme-linked immunosorbent assay, immunofluorescence assay, and flow cytometry, and antibodies were tested for inhibition of parasite binding to CSA. Results: Over 50% of individuals had antibodies that recognized VAR2CSA. Affinity-purified PvDBP human antibodies and a PvDBP monoclonal antibody recognized VAR2CSA, showing that PvDBP can give rise to cross-reactive antibodies. Importantly, the monoclonal antibody inhibited parasite binding to CSA, which is the primary in vitro correlate of protection from placental malaria. Conclusions: These data suggest that PvDBP induces antibodies that functionally recognize VAR2CSA, revealing a novel mechanism of cross-species immune recognition to falciparum malaria.


Asunto(s)
Antígenos de Protozoos/inmunología , Antígenos de Superficie/inmunología , Reacciones Cruzadas/inmunología , Malaria Falciparum/inmunología , Malaria Vivax/inmunología , Plasmodium falciparum/inmunología , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Receptores de Superficie Celular/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antiprotozoarios/sangre , Niño , Sulfatos de Condroitina , Colombia , Eritrocitos/parasitología , Euterios/inmunología , Femenino , Humanos , Inmunidad , Embarazo
19.
Am J Trop Med Hyg ; 99(2): 357-359, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29869606

RESUMEN

Malaria rapid diagnostic tests (RDTs) are widely used in clinical and surveillance settings. However, the performance of most RDTs has not been characterized at parasite densities below detection by microscopy. We present findings from Uganda, where RDT results from 491 participants with suspected malaria were correlated with quantitative polymerase chain reaction (qPCR)-defined parasitemia. Compared with qPCR, the sensitivity and specificity of the RDT for Plasmodium falciparum mono-infections were 76% (95% confidence interval [CI]: 68-83%) and 95% (95% CI: 92-97%), respectively. The sensitivity of the RDT at parasite densities between 0.2 and 200 parasites/µL was surprisingly high (87%, 95% CI: 74-94%). The high sensitivity of the RDT is likely because of histidine-rich protein 2 from submicroscopic infections, gametocytes, or sequestered parasites. These findings underscore the importance of evaluating different RDTs in field studies against qPCR reference testing to better define the sensitivity and specificity, particularly at low parasite densities.


Asunto(s)
Malaria Falciparum/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Parasitemia/diagnóstico , Reacción en Cadena de la Polimerasa/normas , Adolescente , Adulto , Antígenos de Protozoos/sangre , Antígenos de Protozoos/genética , Niño , Preescolar , Femenino , Humanos , Límite de Detección , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Sensibilidad y Especificidad , Uganda/epidemiología , Adulto Joven
20.
Clin Transl Immunology ; 7(4): e1015, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670745

RESUMEN

Objectives: Blood stage malaria parasites attenuated with seco-cyclopropyl pyrrolo indole (CPI) analogues induce robust immunity in mice to homologous and heterologous malaria parasites and are being considered for the development of a human vaccine. However, it is not understood how attenuated parasites induce immunity. We showed that following vaccination, parasite DNA persisted in blood for several months, raising the possibility that ongoing immune stimulation may be critical. However, parasites were not seen microscopically beyond 24 h postvaccination. We aimed to provide a mechanistic understanding of immune induction. Methods: Mice were vaccinated with chemically attenuated Plasmodium chabaudi parasites. PCR and adoptive transfer studies were used to determine the presence of parasites and antigen in vivo. In other experiments, Plasmodium falciparum parasitised red blood cells were attenuated in vitro and RNA and antigen expression studied. Results: We show that blood transferred from vaccinated mice into naïve mice activates T cells and induces complete protective immunity in the recipient mice strongly suggesting that there is persistence of parasite antigen postvaccination. This is supported by the presence of parasite RNA in vaccinated mice and both RNA and antigen expression in P. falciparum cultures treated with CPI drugs in vitro. In addition, drugs that block parasite growth also prevent the induction of immunity in vaccinated mice, indicating that some growth of attenuated parasites is required for immune induction. Conclusions: Attenuated parasites persist at submicroscopic levels in the blood of mice postvaccination with the ability to activate T cells and induce ongoing protective immune responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...